

for Vertex Standard VX-P820/P920

USER'S GUIDE

General Dynamics SATCOM Technologies 3750 W. Loop 281 Longview, Texas 75604

Copyright © 2007 General Dynamics All Rights Reserved Printed in U.S.A.

CG-1345 Rev. C

AUTOTUNE™ SOFTWARE LICENSE AGREEMENT

The software license agreement governing use of the AutoTune[™] for VX-P820/P920 software may be found on the installation CD in the license folder in License_Agreement.rtf.

TRADEMARKS

VS Vertex Standard, the Vertex Standard logo, and Vertex Standard are registered ® trademarks of Vertex Standard USA, Inc.

All other products or names referenced throughout this document are the property of their respective owners.

TABLE OF CONTENTS

1. Introduction	1
2. Scope	1
3. Requirements	2
3.1. Firmware	2
3.2. Analyzer	2
4. Radio Alignment Test Setup	2
4.1. Setup Recommendations	2
4.2. VX-P820/P920 Test Setup	2
4.3. Radio Test Set	2
5. Alignment and Test Descriptions	2
5.1. Frequency	2
5.1.1. Alignment	2
5.1.2. Test	2
5.2. RX Tune	2
5.2.1. Alignment	2
5.3. SQL Sensitivity	2
5.3.1. Alignment	2
5.4. TX Power	2
5.4.1. Alignment	2
5.4.2. Test	2
5.5. Maximum Deviation	2
5.5.1. Alignment	2
5.5.2. Test	2
5.6. Sub Audio Deviation	2
5.6.1. Alignment	2
5.6.2. Test	2
6. Basic Troubleshooting	2
6.1. Firmware	2
6.2. Power-Up Error Codes	2
6.3. Alignment and Test Troubleshooting	2
7. Support Information	2
7.1. Technical Support	2
7.2. Sales Support	2
8. References	2
APPENDIX A. Test Set	4-2
APPENDIX B. Analyzer Interface Specifications	3-2
APPENDIX C. Limits	2-2
APPENDIX D. Sample Test Result Report)-2
FF	_

LIST OF FIGURES

Figure 4-1. General Radio Test Setup	2
Figure A-1. Test Set Schematic	A-2
Figure D-1. Sample Test Result Report	D-2

LIST OF TABLES

Table 4-1. Radio Test Setup Connections	2
Table 5-1. Test Channel Configuration	2
Table 5-2. Analyzer Configuration for Frequency Alignment and Test	2
Table 5-3. Frequency Alignment Results	2
Table 5-4. Frequency Test Results	2
Table 5-5. Analyzer Configuration for RX Tune Alignment	2
Table 5-6. RX Tune Alignment Results	2
Table 5-7. Analyzer Configuration for SQL Sensitivity Alignment	2
Table 5-8. SQL Sensitivity Alignment Results	2
Table 5-9. Analyzer Configuration for TX Power Alignment and Test	2
Table 5-10. TX Power Alignment Results	2
Table 5-11. TX Power Test Results.	2
Table 5-12. Analyzer Configuration for Maximum Deviation Alignment and Test	2
Table 5-13. Maximum Deviation Alignment Results.	2
Table 5-14. Maximum Deviation Test Results.	2
Table 5-15. Analyzer Configuration for Sub Audio Deviation Alignment and Test	2
Table 5-16. Sub Audio Deviation Alignment Results.	2
Table 5-17. Sub Audio Deviation Test Results.	2
Table 6-1. Firmware.	2
Table 6-2. Power-Up Error Codes	2
Table 6-3. Alignment and Test Troubleshooting Chart.	2
Table B-1. Analyzer to PC Serial Cable	.B-2
Table C-1. Default Vertex Standard VX-P820 Test Limits	C-2
Table C-2. Default Vertex Standard VX-P820 Alignment Targets	C-2
Table C-3. Default Vertex Standard VX-P920 Test Limits	C-2
Table C-4. Default Vertex Standard VX-P920 Alignment Targets	C-2

1. Introduction

The Vertex Standard VX-P820/P920 are VHF/UHF P25 portable radios providing analog FM and digital P25 reception and transmission of voice and data in the VHF/UHF frequency bands used in land mobile environments. The General Dynamics AutoTune[™] application is designed to provide an automated test and alignment solution for Vertex Standard VX-P820/P920 radios. AutoTune[™] supports the R2600 family of Communications Systems Analyzer.

2. Scope

This document is intended to provide information regarding the operation of the AutoTune[™] software application with the Vertex Standard VX-P820/P920. This document encompasses radio information specific to the Vertex Standard VX-P820/P920 radios only. Any references to other test equipment appearing in this document are for illustration purposes only, unless otherwise noted.

3. Requirements

3.1. Firmware

Before attempting to align or test a VX-P820/P920 radio, the radio's firmware **must** be version **1.29** or later. This firmware version is required to support the AutoTune[™] alignment and test capabilities.

On models equipped with an LCD, the radio firmware version may be viewed by pressing and holding the side LAMP Button key while turning the radio on. After radio power-on and self test, the radio will enter the screen test/version view mode. Subsequent LAMP Button presses will cycle through the following screens, in this order:

- Icon test
- Character test
- Serial number
- Firmware version/band
- DSP version

On the Firmware version/band screen, the firmware version is the 4 character value on the left.

For models without an LCD, the radio firmware version may be obtained by using Vertex Standard CE76 software. With the radio connected to a PC, select the Radio > Upload command from the main menu bar. Once the radio's information has been uploaded, the firmware version number is displayed in the "FW Version" field.

3.2. Analyzer

Because of the P25 nature of Vertex Standard VX-P820/P920 radios, a P25-equipped R2600 series Communications System Analyzer is necessary for full use of AutoTune[™] for VX-P820/P920 radios. However, a R2600 series analyzer without the P25 option will perform all alignments and tests except for Maximum Deviation. If Maximum Deviation is selected for performance and the R2600 series analyzer in use is not P25 equipped, the user will be notified and the Maximum Deviation test will be marked as Fail.

The analyzer must contain the following PROJ 25/ASTRO/SNET software version to perform correctly:

6.04.B00 or later

Software issues in some previous versions of the PROJ 25/ASTRO/SNET firmware may prevent correct monitor frequency configuration. Please refer to the analyzer's Operator's Manual for information on how to upgrade the analyzer firmware if necessary.

4. Radio Alignment Test Setup

In order to perform the alignment procedures, the VX-P820/P920 must be connected to both the PC and the communications analyzer as shown in the figure(s) below.

Please make certain that the radio under test is configured as described in Figure 4-1 **before** attempting to perform the indicated alignment or test. Failure to do so may result in poor radio performance and/or damage to the communications analyzer or radio equipment under test.

4.1. Setup Recommendations

In the absence of a battery eliminator, it is highly recommended to use a fully charged battery when performing radio alignments or tests, and to perform alignments or tests with the radio under test <u>out</u> of the battery charger. Failure to do so may result in poor alignment performance and/or random radio resets, especially during high power tests or alignments such as TX Power.

As electronic parts generally exhibit their best typical performance at normal operating temperatures, it is recommended that the radio under test be allowed to warm-up for 60 seconds after power-on and before beginning an alignment or test. This waiting period allows the radio's internal electrical components to achieve proper operating temperature, resulting in more accurate test results.

<u>Analyzer Setup</u>: Adjust the SQUELCH knob on the analyzer fully clockwise until rotation stops and then adjust it counter-clockwise until the squelch indicator light comes on <u>before</u> beginning any tests or alignments. Some radio tests or alignments may not perform accurately without this analyzer adjustment.

4.2. VX-P820/P920 Test Setup

Figure 4-1. General Radio Test Setup

Cable	Connections	Cable Description
1	VX-P820/P920 Antenna port to R2670 RF IN/OUT port	Coaxial BNC Cable
2	PC COM port OR USB to Serial Adapter to VX-P820/P920 Accessory Port	Vertex Standard Part Number CT-109 and (optional) USB to Serial adapter.
3	PC COM port OR USB to Serial Adapter to R2670 RS-232 Port	See APPENDIX B.

Table 4-1. Radio Test Setup Connections.

Note: For Cable 2 in Table 4-1, the Accessory Port connector <u>must</u> be configured as described in Figure 4-1, with the cable wire leading to the PC pointing in the same direction as the radio antenna connector. Incorrect orientation of Cable 2 will result in no radio power-up or radio communication failure.

4.3. Radio Test Set

A radio test set is a service aid which provides a means of injecting signals into and sampling audio output from a radio under test for purposes of performance verification. It generally connects to the radio's universal/accessory port, to a PC, and to other test equipment, such as the R2670. For example, to determine the radio receiver's sensitivity to incoming signals, a SINAD test may be performed. A radio test set can be used to route the radio's audio output to a SINAD meter for measurement.

Currently, Vertex Standard does not market a radio test set for VX-P820/P920 radios. However, a test set may be constructed using the schematic provided in the radio's Service Manual. This schematic is also included in Appendix A of this document.

Though not critical for AutoTune[™] performance, a radio test set may be used to verify certain receiver alignments supported within AutoTune[™], such as RX Tune and SQL Sensitivity. Because of the lack of a standardized test set, AutoTune[™] currently does not directly support a RX Tune or SQL Sensitivity test. If such verification is desired and a radio test set is available, configure the R2600 and radio channels as described for RX Tune and SQL Sensitivity in sections 5.2 and 5.3, respectively. Using the R2600, sample the appropriate SINAD and squelch measurements and compare against Vertex Standard VX-P820/P920 published tolerances for acceptance.

5. Alignment and Test Descriptions

Table 5-1 provides the channel configuration for each Test Channel referenced throughout this section. Note that to find the channel operating frequency for a particular radio, the radio operating band must be known. The band designation can usually be located on a sticker underneath the radio's battery.

	VHF	UHF-A (G6)	UHF-H (G8)	UHF-D (G7)	Channel Space	Band	Signaling
CH 01	154.1MHz	435.1MHz	415.1MHz	485.1MHz	Wide	Center	
CH 02	134.1MHz	400.1MHz	380.1MHz	450.1MHz	Wide	Low	
CH 03	173.9MHz	469.9MHz	449.9MHz	519.9MHz	Wide	High	
CH 04	154.1MHz	435.1MHz	415.1MHz	485.1MHz	Wide	Center	CTCSS
CH 05	154.1MHz	435.1MHz	415.1MHz	485.1MHz	Wide	Center	DCS
CH 06	154.1MHz	435.1MHz	415.1MHz	485.1MHz	Narrow	Center	
CH 07	154.1MHz	435.1MHz	415.1MHz	485.1MHz	Narrow	Center	CTCSS
CH 08	154.1MHz	435.1MHz	415.1MHz	485.1MHz	Narrow	Center	DCS
CH 09	154.1MHz	435.1MHz	415.1MHz	485.1MHz	Digital	Center	Digital

Table 5-1. Test Channel Configuration

5.1. Frequency

Monitor Mode	RF Control	Port	Frequency	Modulation	Attenuation
Standard	Monitor	RF I/O	Test Channel 06	FM	20 dB
Table 5.9. Analyzer Configuration for Frequency Alignment and Test					

 Table 5-2. Analyzer Configuration for Frequency Alignment and Test

5.1.1. Alignment

The radio is set to Test Channel 6 and commanded to transmit by the software. Using a best linear fit algorithm, several frequency error samples are taken with the analyzer and used to determine the radio softpot value with a frequency error closest to the alignment target value found in APPENDIX C. Once the measurement closest to the target value is found, the corresponding softpot is programmed into the radio.

The following radio test report results are returned for the Frequency alignment:

Name	Description
Result	Pass or Fail. This indicates whether the alignment succeeded in bringing the radio
	parameter into alignment limits as specified in the limits file.
Frequency	Band center frequency for the radio under test.
Max Limit	Maximum passable frequency error, inclusive, as specified in the limits file.
Freq Error	Measured frequency error after alignment
Min Limit	Minimum passable frequency error, inclusive, as specified in the limits file.
Old Softpot	Radio parameter softpot value before alignment.
New Softpot	Radio parameter softpot value after alignment.

Table 5-3. Frequency Alignment Results

5.1.2. Test

The radio is set to Test Channel 6 and commanded to transmit by the software. The analyzer then samples the radio's frequency error. If the sampled frequency error falls within the Frequency test limit range described in APPENDIX C, the test is marked as pass. Otherwise, the test is marked as fail.

The following radio test report results are returned for the Frequency test:

Name	Description
Result	Pass or Fail. This indicates whether the radio's sampled Frequency error fell within the test limits as specified in the limits file.
	within the test innus as specified in the innus file.
Frequency	Band center frequency for the radio under test.
Max Limit	Maximum passable frequency error, inclusive, as specified in the limits file.
Freq Error	Measured frequency error after alignment
Min Limit	Minimum passable frequency error, inclusive, as specified in the limits file.
Softpot	Current radio parameter softpot value.

Table 5-4. Frequency Test Results

5.2. RX Tune

Monitor Mode	RF Control	Port	Frequency	Modulation	Output Level
Standard	Generate	RF I/O	Test Channel 01	1 kHz @ 3 kHz dev.	-103 dBm
Standard	Generate	RF I/O	Test Channel 02	1 kHz @ 3 kHz dev.	-103 dBm
Standard	Generate	RF I/O	Test Channel 03	1 kHz @ 3 kHz dev.	-103 dBm

Table 5-5. Analyzer Configuration for RX Tune Alignment

5.2.1. Alignment

The radio is set to receive at Test Channel 1. After setting up the analyzer according to Table 5-5, the radio's RSSI softpot is sequentially incremented across the Low (CH 02), Center (CH 01) and High (CH 03) portions of the radio band. The software uses the Peak RSSI values it locates at each of these points to calculate appropriate softpot

values for the respective portions of the band. These softpot values are then programmed into the radio. Each configured channel's RX Tune value is then updated to reflect these new radio softpot values.

The following radio test report results are returned for the RX Tune alignment:

Name	Description
Result	Pass or Fail. This indicates whether the alignment succeeded.
Frequency	Band Center frequency for the radio under test.
Low Old	Band Low slope softpot setting before alignment.
Low New	Band Low slope softpot setting after alignment.
Center Old	Band Center softpot setting before alignment.
Center New	Band Center softpot setting after alignment.
High Old	Band High slope softpot setting before alignment.
High New	Band High slope softpot setting after alignment.

Table 5-6. RX Tune Alignment Results

5.3. SQL Sensitivity

Monitor Mode	SQL Point	Frequency	Output Level	Modulation
Standard	TI NSQ W	Test Channel 01	-103 dBm	1 kHz @ 3 kHz dev.
" "	TH NSQ W	Test Channel 01	""	1 kHz @ 3 kHz dev.
""	RSSI SQL W	Test Channel 01	"	None
""	TX SAVE W	Test Channel 01	""	None
""	TI NSQ N	Test Channel 06	""	1 kHz @ 1.5 kHz dev.
""	TH NSQ N	Test Channel 06	"	1 kHz @ 1.5 kHz dev.
""	RSSI SQL N	Test Channel 06	""	None
" "	TX SAVE N	Test Channel 06	""	None

Table 5-7. Analyzer Configuration for SQL Sensitivity Alignment

5.3.1. Alignment

The radio is set to receive at Test Channel 1 and the Audio Frequency volume is changed by the software to an adequate level for receiver testing. After setting up the analyzer according to Table 5-7, the radio's first squelch point is sampled repeatedly, averaged, and the result is programmed into the radio as the new squelch point softpot. This process is repeated for each row in Table 5-7.

The following radio test report results are returned for the SQL Sensitivity alignment:

Name	Description
Result	Pass or Fail. This indicates whether the alignment succeeded.
Name	Squelch point title.
Frequency	Band Center frequency for the radio under test.
Power Level	Signal generator output level for aligning this squelch point.
Old Softpot	Old squelch point softpot setting before alignment.
New Softpot	New squelch point softpot setting after alignment.

 Table 5-8. SQL Sensitivity Alignment Results

5.4. TX Power

Monitor Mode	RF Control	Port	Frequency	Modulation	Attenuation
Standard	Monitor	RF I/O	Test Channel 06	FM	20 dB
Table 5-9 Analyzer Configuration for TX Power Alignment and Test					

Table 5-9. Analyzer Configuration for TX Power Alignment and Test

5.4.1. Alignment

The radio is set to Test Channel 6 and commanded to transmit by the software. Using a best linear fit algorithm, several power measurements are taken with the analyzer and used to determine the radio softpot value with a TX power closest to the alignment target value found in APPENDIX C. Once the measurement closest to the target value is found, the corresponding softpot is programmed into the radio. This process is repeated for each TX Power point, including High (5 W), Low-High (2.5 W), Low-Mid (1 W), and E-Low (.25 W).

The following radio test report results are returned for the TX Power alignment:

Name	Description
Result	Pass or Fail. This indicates whether the alignment succeeded in bringing the radio
	parameter into alignment limits as specified in the limits file.
Name	TX Power point under test.
Frequency	Band center frequency for the radio under test.
Max Limit	Maximum passable power, inclusive, as specified in the limits file.
Power	Measured power after alignment.
Min Limit	Minimum passable power, inclusive, as specified in the limits file.
Old Softpot	Radio parameter softpot value before alignment.
New Softpot	Radio parameter softpot value after alignment.

Table 5-10. TX Power Alignment Results.

5.4.2. Test

The radio is set to Test Channel 6 and commanded to transmit by the software. The analyzer then samples the radio's TX power. If the sampled TX power falls within the TX Power test limit range for the power point under test as described in APPENDIX C, the test is marked as pass. Otherwise, the test is marked as fail.

The following radio test report results are returned for the TX Power test:

Name	Description
Result	Pass or Fail. This indicates whether the alignment succeeded in bringing the radio parameter into alignment limits as specified in the limits file.
Name	TX Power point under test.

Frequency	Band center frequency for the radio under test.	
Max Limit	Maximum passable power, inclusive, as specified in the limits file.	
Power	Measured power after alignment.	
Min Limit	Minimum passable power, inclusive, as specified in the limits file.	
Softpot	Current radio parameter softpot value.	

Table 5-11. TX Power Test Results.

5.5. Maximum Deviation

Monitor Mode	RF Control	Port	Attenuation	Name	Frequency
P25 Conventional	Monitor	RF I/O	20 dB	Wide	Test Channel 01
P25 Conventional	Monitor	RF I/O	20 dB	Narrow	Test Channel 06
P25 Conventional	Monitor	RF I/O	20 dB	Digital	Test Channel 09

Table 5-12. Analyzer Configuration for Maximum Deviation Alignment and Test

5.5.1. Alignment

The radio is set to Test Channel 1 and commanded to transmit by the software. Using a best linear fit algorithm, several deviation measurements are taken with the analyzer and used to determine the radio softpot value with a deviation closest to the alignment target value found in APPENDIX C. Once the measurement closest to the target value is found, the corresponding softpot is programmed into the radio. This process is performed for each Maximum Deviation point in Table 5-12: Wide (CH 01), Narrow (CH 06), and Digital (CH 09).

The following radio test report results are returned for Maximum Deviation alignment:

Name	Description
Result	Pass or Fail. This indicates whether the alignment succeeded in bringing the radio
	parameter into alignment limits as specified in the limits file.
Name	Maximum Deviation point under test.
Frequency	Band center frequency for the radio under test.
Max Limit	Maximum passable deviation, inclusive, as specified in the limits file.
Deviation	Measured deviation after alignment.
Min Limit	Minimum passable deviation, inclusive, as specified in the limits file.
Old Softpot	Radio parameter softpot value before alignment.
New Softpot	Radio parameter softpot value after alignment.

Table 5-13. Maximum Deviation Alignment Results.

5.5.2. Test

The radio is set to Test Channel 1 and commanded to transmit by the software. The analyzer then samples the radio's maximum deviation. If the sampled deviation falls within the Maximum Deviation test limit range for the deviation point under test as

described in APPENDIX C, the test is marked as pass. Otherwise, the test is marked as fail.

The following radio test report results are returned for the Maximum Deviation test:

Name	Description
Result	Pass or Fail. This indicates whether the alignment succeeded in bringing the radio
	parameter into alignment limits as specified in the limits file.
Name	Maximum Deviation point under test.
Frequency	Band center frequency for the radio under test.
Max Limit	Maximum passable deviation, inclusive, as specified in the limits file.
Deviation	Measured deviation after alignment.
Min Limit	Minimum passable deviation, inclusive, as specified in the limits file.
Softpot	Current radio parameter softpot value.

Table 5-14. Maximum Deviation Test Results.

5.6. Sub Audio Deviation

Monitor Mode	RF Control	Port	Modulation	Attenuation	Name	Frequency
Standard	Monitor	RF I/O	FM	20 dB	CTCSS Wide	Test Channel 04
Standard	Monitor	RF I/O	FM	20 dB	CTCSS Narrow	Test Channel 05
Standard	Monitor	RF I/O	FM	20 dB	DCS Wide	Test Channel 07
Standard	Monitor	RF I/O	FM	20 dB	DCS Narrow	Test Channel 08

Table 5-15. Analyzer Configuration for Sub Audio Deviation Alignment and Test.

5.6.1. Alignment

The radio is set to Test Channel 4 and commanded to transmit by the software. Using a best linear fit algorithm, several deviation measurements are taken with the analyzer and used to determine the radio softpot value with a deviation closest to the target value found in APPENDIX C. Once the measurement closest to the alignment target value is found, the corresponding softpot is programmed into the radio. This process is performed for each Sub Audio Deviation point in Table 5-15: CTCSS Wide (CH 04), CTCSS Narrow (CH 05), DCS Wide (CH 07) and DCS Narrow (CH 08).

The following radio test report results are returned for Sub Audio Deviation alignment:

Name	Description
Result	Pass or Fail. This indicates whether the alignment succeeded in bringing the radio
	parameter into alignment limits as specified in the limits file.
Name	Sub Audio Deviation point under test.
Frequency	Band center frequency for the radio under test.
Max Limit	Maximum passable sub audio deviation, inclusive, as specified in the limits file.
Deviation	Measured deviation after alignment.
Min Limit	Minimum passable sub audio deviation, inclusive, as specified in the limits file.
Old Softpot	Radio parameter softpot value before alignment.
New Softpot	Radio parameter softpot value after alignment.

Table 5-16. Sub Audio Deviation Alignment Results.

5.6.2. Test

The radio is set to Test Channel 4 and commanded to transmit by the software. The analyzer then samples the radio's sub audio deviation. If the sampled deviation falls within the Sub Audio Deviation test limit range for the deviation point under test as described in APPENDIX C, the test is marked as pass. Otherwise, the test is marked as fail.

The following radio test report results are returned for the Sub Audio Deviation test:

Name	Description
Result	Pass or Fail. This indicates whether the alignment succeeded in bringing the radio parameter into alignment limits as specified in the limits file.
Name	Maximum Deviation point under test.
Frequency	Band center frequency for the radio under test.
Max Limit	Maximum passable deviation, inclusive, as specified in the limits file.
Deviation	Measured deviation after alignment.
Min Limit	Minimum passable deviation, inclusive, as specified in the limits file.
Softpot	Current radio parameter softpot value.

Table 5-17. Sub Audio Deviation Test Results.

6. Basic Troubleshooting

6.1. Firmware

The radio firmware must be version **1.29** or later to be tested or aligned by the AutoTune software.

Symptom	Possible Cause	Solution
AutoTune software fails to put radio into test mode.	Incompatible radio firmware.	Before beginning a test or alignment, the radio under test must be placed into test mode. Successful entry into test mode can be observed on LCD- equipped models when "AUTO TEST" is displayed on the radio's LCD screen. If repeated unsuccessful attempts have been made to place the radio into test mode using the AutoTune software, please verify that the radio's firmware meets the above requirement. See section 3.1 <i>Firmware</i> for more information

Table 6-1. Firmware.

6.2. Power-Up Error Codes

When powered on, the radio performs some initial self test routines to ensure firmware and hardware integrity. If a problem is detected during these routines, an error message below may be displayed to the radio's LCD screen.

Message	Description	Corrective Action
ERROR 1	EEPROM Checksum Non-Fatal Error	Use AutoTune [™] or CE 76 to realign/retest the radio. This action calculates and programs the EEPROM checksum.
ERROR 2	EEPROM Checksum Fatal Error	Send radio to depot
ERROR 3	FLASH ROM Checksum Fatal Error	Send radio to depot

Table 6-2. Power-Up Error Codes.

6.3. Alignment and Test Troubleshooting

Symptom	Possible Cause	Solution
RX Tune Low, High Old results are slightly different than the New results from previous alignment.	None.	This seeming error is caused by storing calculated floating-point values as integers in the radio's FLASH ROM. Since some loss of precision will occur, the calculated previous RX Tune Low, High Old values may vary slightly from

		alignment to alignment. This variance does not affect the radio's sensitivity in any way.
Test or Alignment failure	Analyzer measurement.	Occasionally, an alignment or test may fail because a poor measurement was received from the analyzer. When this occurs, first attempt to realign or retest the radio for the failed item. If an analyzer measurement was indeed the reason for the failure, a subsequent test or alignment should be successful.
Maximum Deviation test or alignment fails repeatedly	Mistuned Modulation Balance parameter	The Modulation Balance parameter may affect the Maximum Deviation parameter. Use Vertex Standard CE76 tuning software to properly align the Modulation Balance parameter. Please see the CE76 Help for instructions on how to adjust this parameter.
Radio left in AutoTest mode	Radio communication	Turn the radio off, then back on.
and tool of alignmont.	01101.	

Table 6-3. Alignment and Test Troubleshooting Chart.

7. Support Information

7.1. Technical Support

Telephone: 480.441.0664 Fax: 480.441.4535 Email: CTE@gdsatcom.com

7.2. Sales Support

Telephone: 903-381-4131 Fax: 903-295-1479 Mobile: 847-878-2274 Email: CTE@gdsatcom.com

8. References

- <u>VX-P920 Series UHF Band Service Manual</u>. Part# EC033U95A. Cypress, CA: Vertex Standard CO., LTD., 2005.
- <u>VX-P920 Series VHF Band Service Manual</u>. Part# EC033N95A. Cypress, CA: Vertex Standard CO., LTD., 2005.

APPENDIX A. Test Set

The figure below depicts the test set schematic necessary to perform several manual VX-P820/P920 receiver alignments and tests. This schematic is provided courtesy of Vertex Standard USA, Inc.

AF TEST ADAPTER SCHEMATIC

Figure A-1. Test Set Schematic

Source: EC033U95A, VX-P920 Series UHF Band Service Manual, ©2005, Vertex Standard CO., LTD.

APPENDIX B. Analyzer Interface Specifications

DB-25 (M) Analyzer	Cable Wiring	DB-9 (F) Computer
TxD 2		2 RxD
RxD 3		3 TxD
RTS 4		7 RTS
CTS 5 DSR 6		4 DTR
DCD 8		1 DCD
DTR 20		8 CTS 6 DSR
GND 7		5 GND

Table B-1. Analyzer to PC Serial Cable

Rev. B

APPENDIX C. Limits

The limits used to determine whether a test or alignment passes or fails are stored in Vertex Standard.VX-P820/P920.Limits.ini. This file contains the default limits as defined by the radio manufacturer and generally should not be modified.

However, in the event that the limits must be modified because of extenuating circumstances, the limits file may be accessed from the main screen by first selecting a radio from the **Radio Make and Model** list box and then selecting the **Tools > Radio > Test Limits** menu item. The limits file can be edited with a standard text editor, such as Notepad.

Modify the test and alignment limits with care. Improper use of the test and alignment limits can adversely affect radio test results. It is recommended to back up the limits file before modifications are made.

The limits file is partitioned into various sections. Generally, each section corresponds to a specific alignment or test, or to a specific point in an alignment or test. For instance, the TX Power High point is in its own section, even though it's part of the more comprehensive TX Power alignment.

When editing the limits file, make sure the format:

Name=limit

is followed precisely, with no embedded spaces between the equals sign and the test limit. Any improper editing may cause AutoTune[™] to incorrectly test or align a radio.

The following tables list the default test limits and alignment targets by model for Vertex Standard VX-P820/P920 radios.

Section	Name	Point	VHF	UHF A (G6)	UHF H (G8)	UHF D (G7)		
5.1	Frequency		+/- 300 Hz					
5.2	RX Tune		-103 dBm					
5.3	SQL Sensitivity	TI NSQ Wide		Min: -113 dBr	n; Max: -119 dBm			
		TH NSQ W	Min: -119 dBm; Max: -125 dBm					
		RSSI SQL W	Min: -111 dBm; Max: -117 dBm Min: -95 dBm; Max: -101 dBm					
		TX SAVE W						
		TI NSQ N		Min: -113 dBn	n; Max: -119 dBm			
		TH NSQ N		Min: -121 dBn	n; Max: -124 dBm			
		RSSI SQL N	Min: -114 dBm; Max: -117 dBm Min: -95 dBm; Max: -101 dBm					
		TX SAVE N						
5.4	TX Power	High	Min: 4.5 W; Max: 5.5 W					
		Low-High		Min: 2.1 V	V; Max: 2.9 W			
		Low-Mid		Min: 0.7 V	V; Max: 1.4 W			
		E-Low		Min: 0.1 V	V; Max: 0.4 W			
5.5	Maximum Deviation	Wide		Min: 3.7 kH	z; Max: 4.7 kHz			
		Narrow		Min: 1.7 kH	z; Max: 2.5 kHz			
		Digital	Min: 3.0 kHz; Max: 3.9 kHz					
5.6	Sub Audio Deviation	CTCSS Wide		Min: 0.5 kH	z; Max: 0.8 kHz			
		CTCSS Narrow	ırrow Min: 0.2 kHz; Max: 0.55 kHz					
		DCS Wide		Min: 0.5 kH	z; Max: 0.8 kHz			
		DCS Narrow	Min: 0.2 kHz; Max: 0.55 kHz					

Table C-1. Default Vertex Standard VX-P820 Test Limits

Section	Name	Point	VHF	UHF A (G6)	UHF H (G8)	UHF D (G7)			
5.1	Frequency		0 Hz						
5.2	RX Tune		-103 dBm						
5.3	SQL Sensitivity	TI NSQ Wide		-11	6 dBm				
		TH NSQ W		-12	2 dBm				
		RSSI SQL W		-11	4 dBm				
		TX SAVE W	-98 dBm						
		TI NSQ N	-116 dBm						
		TH NSQ N		-121 dBm					
		RSSI SQL N		-114 dBm					
		TX SAVE N	-98 dBm						
5.4	TX Power	High		5	5.0 W				
		Low-High	2.5 W						
		Low-Mid	1.0 W						
		E-Low	0.25 W						
5.5	Maximum Deviation	Wide		4.	2 kHz				
		Narrow	2.1 kHz						
		Digital	3.4 kHz						
5.6	Sub Audio Deviation	CTCSS Wide		0.	6 kHz				
		CTCSS Narrow		0.	3 kHz				
		DCS Wide		0.	6 kHz				
		DCS Narrow		0.	3 kHz				

Table C-2. Default Vertex Standard VX-P820 Alignment Targets

Section	Name	Point	VHF	UHF A (G6)	UHF H (G8)	UHF D (G7)			
5.1	Frequency		+/- 300 Hz		+/- 500 Hz				
5.2	RX Tune			-103 dBm					
5.3	SQL Sensitivity	TI NSQ Wide		Min: -110 dBr	m; Max: -116 dBm				
		TH NSQ W		Min: -119 dBm; Max: -125 dBm					
		RSSI SQL W		Min: -110 dBr	m; Max: -116 dBm				
		TX SAVE W		Min: -95 dBm	n; Max: -101 dBm				
		TI NSQ N		Min: -111 dBr	m; Max: -117 dBm				
		TH NSQ N		Min: -119 dBr	n; Max: -125 dBm				
		RSSI SQL N	Min: -111 dBm; Max: -117 dBm Min: -95 dBm; Max: -101 dBm						
		TX SAVE N							
5.4	TX Power	High	4.3 W – 5.7 W Min: 4.4 W; Max: 5.8 W						
		Low-High	2.1 W – 2.9 W	1	Vin: 2.1 W; Max: 2.9 W	I			
		Low-Mid	0.7 W – 1.4 W	1	Min: 0.7 W; Max: 1.4 W	1			
		E-Low	0.1 W – 0.4 W	1	Vin: 0.2 W; Max: 0.6 W	1			
5.5	Maximum Deviation	Wide		Min: 3.7 kH	z; Max: 4.7 kHz				
		Narrow		Min: 1.7 kH	z; Max: 2.5 kHz				
		Digital	Min: 3.0 kHz; Max: 3.9 kHz						
5.6	Sub Audio Deviation	CTCSS Wide	Min: 0.5 kHz; Max: 0.8 kHz						
		CTCSS Narrow	w Min: 0.2 kHz; Max: 0.55 kHz						
		DCS Wide		Min: 0.5 kH	z; Max: 0.8 kHz				
		DCS Narrow	Min: 0.2 kHz; Max: 0.55 kHz						

Table C-3. Default Vertex Standard VX-P920 Test Limits.

Section	Name	Point	VHF	UHF A (G6)	UHF H (G8)	UHF D (G7)			
5.1	Frequency		0 Hz						
5.2	RX Tune			-103 dBm					
5.3	SQL Sensitivity	TI NSQ Wide		Min: -110 dBr	n; Max: -116 dBm				
		TH NSQ W		Min: -119 dBr	n; Max: -125 dBm				
		RSSI SQL W	. W Min: -110 dBm; Max: -116 dBm						
		TX SAVE W							
		TI NSQ N		Min: -111 dBr	n; Max: -117 dBm				
		TH NSQ N		n; Max: -125 dBm					
		RSSI SQL N	Min: -111 dBm; Max: -117 dBm						
		TX SAVE N	Min: -95 dBm; Max: -101 dBm						
5.4	TX Power	High		5	5.0 W				
		Low-High	2.5 W						
		Low-Mid	1.0 W						
		E-Low		0.	.25 W				
5.5	Maximum Deviation	Wide		4.	2 kHz				
		Narrow	2.1 kHz						
		Digital	3.4 kHz						
5.6	Sub Audio Deviation	CTCSS Wide	0.6 kHz						
		CTCSS Narrow		0.	3 kHz				
		DCS Wide		0.	6 kHz				
		DCS Narrow	larrow 0.3 kHz						

 Table C-4. Default Vertex Standard VX-P920 Alignment Targets.

APPENDIX D. Sample Test Result Report

		Test F	Result Report				

Model #:	VX-P924		Date/Time:	7/16/2007 9:	13 AM		
Serial #	: 6K160004		Operator ID:	mm			
Comments	: Testing total	typical alignm	ment time on P92	9.			
Frequenc	y Alignment						
Begult	Tromional	old Softpot	New Softpot	Fred Error	Min Limit	Max Limit	
Result	rrequency	ora sorepoe	New Borepoe				
Pass	485.100 MHz	74	68	-48 Hz	-500 Hz	500 Hz	
RX Tune							
Result	Frequency	Low Old	Low New	Center 1d	Center New	High Old	High New
Pass	485.100 MHz	22	21		18	116	116
Squelch	Sensitivity						
*******		i la companya da companya d					
Result	Name	Fr acy	Po	old s	New Softpot		
Pass	TI NSQ W	100 M	-1 . E	89	86		
Pass	TH NSQ W	P	-1 . BE.a	141	136		
Pass	RSSI SQL W	485. 1	1 .0 dBm	53	55		
Pass	TX SAVE W	6 5.7 Z	-98.0 dBm	78	80		
Pass	TI NSQ N	ZHE. 0	-114.0 dBm	90	83		
Pass	TH NSQ N	4100 MHz	-122.0 dBm	131	128		
Pass	RSSI SQL N	485.100 MHz	-114.0 dBm	46	48		
Pass	TX SAVE N	485.100 MHz	-98.0 dBm	78	80		
TX Power							
	=						
Result	Name	Frequency	Max Limit	Power	Min Limit	Old Softpot	New Softpot
Pass	High	485.100 MHz	5.800 W	4.931 W	4.400 W	166	170
Pass	Low-High	485.100 MHz	2.900 W	2.477 W	2.100 W	112	112
Pass	Low-Mid	485.100 MHz	1.400 W	1.013 W	0.700 W	70	70
Pass	E-Low	485.100 MHz	0.600 W	0.257 W	0.200 W	38	39

T:\cvs\Autotune\Results\VX-P820_P920_6K160004.csv

Figure D-1. Sample Test Result Report